Abstract

The impact of low-energy (1-30 eV) electrons on self-assembled monolayers of heterogeneous oligonucleotides chemisorbed on a gold surface has been investigated by mass spectrometry of desorbed neutral species in an attempt to understand the consequences of secondary electron damage in a short sequence of a DNA single strand. We demonstrate that the most intense observable neutral species (CN, OCN and/or H(2)NCN) desorbed from Cy(6)-Th(3) and Cy(6)-(BrdU)(3) oligos are related to primary fragmentation of the bases induced by electron impact. The dependence of the neutral species desorption on electron energy shows typical signatures of dissociative electron attachment initiated by the formation of shape- and core-excited resonances (i.e. single-electron and two-electron- one-hole transitory anions, respectively). Substitution of dTh by BrdU increases the production of neutral fragments by as much as a factor of about 3 for the entire electron energy range. When the distribution of secondary electrons along radiation tracks in H(2)O is taken into account, we show that the probability for electron damage to heterogeneous oligonucleotides is enhanced by a factor of 2.5-3 for electron energies below 20 eV for both sensitized and unsensitized strands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.