Abstract

The non-linear stress–strain behaviour of plant fibre composites is well-known in the scientific community. Yet, the important consequences of this, in terms of the evolution of stiffness as a function of applied strain and cycles to failure, are not well-studied in literature. This is despite the fact that stiffness degradation is a well-accepted indicator of damage in a composite material, and is regularly used as a component failure criterion. This article systematically explores the evolution of stiffness of various aligned plant fibre composites, subjected to (i) monotonic loading, (ii) low-cycle, repeated progressive loading, and (iii) fatigue loading. The evolution in stiffness in plant fibre composites is found to be complex: structural changes in the elementary fibre cell wall and damage development in the composite have often competing effects on stress–strain behaviour. Indeed, the evolution in stiffness of plant fibre composites is found to be unlike that typically observed in traditional composites, and therefore needs to be taken into account in the design of structural components.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call