Abstract

Reconstructing damage geometry with computationally efficient and effective algorithms is of primary importance in establishing a robust structural health monitoring (SHM) system. In this paper, Born imaging algorithm is proposed for three-dimensional (3D) damage imaging of reinforced concrete structures using electromagnetic waves. This algorithm is derived in time domain for inhomogeneous isotropic and lossy structures. In order to reduce the computational cost of the algorithm, different imaging conditions are introduced. Numerical simulations in a 2D transverse magnetic case for a reinforced concrete slab with multiple damages are performed to test the effectiveness of the algorithm. In this simulated study, sensor data, incident field, and back-propagated field are computed via a finite difference time-domain method. It is concluded that the proposed imaging algorithm is capable of efficiently identifying the damages’ geometries and may be employed in a SHM system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.