Abstract

Structural health monitoring (SHM) of wind turbine blades is significant to the reliability and efficiency of wind energy generation, and it is a challenging issue due to the complicated structures and variational operating conditions. In this investigation, a SHM method for wind turbine blades based on the microphone array and acoustic source identification is proposed. With the equipment of loudspeakers in blade cavities, damage-related information is excited to be captured by the array. To generate accurate acoustic maps with high spatial resolutions, a novel algorithm for sparsity-based sound field reconstruction is developed based on the generalized minimax-concave penalty function. With a laboratory-scale wind turbine model, damage identification performance of the proposed method is evaluated under different parametric and measuring conditions, and experiments are conducted under diverse blade health conditions. Results reveal that and both internal and external damage in operating blades can be recognized as acoustic sources, and satisfactory performance of the proposed method can be guaranteed with appropriate parameters. Furthermore, determination criteria for parameters are concluded with respect to the variation of measuring conditions. This prototype study provides useful insights into the development of effective SHM systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.