Abstract

This study addresses the issue of structural damage identification and location in carbon fiber reinforced polymer plates using electrical measurements. Electrical resistance tomography is presented as a method for structural damage localization in composite parts. A set of electrodes is fixed on the edges of the part and combinations of DC current injections and voltage measurements are applied to the system. The change of voltage between different times in the part’s service life (e.g. start and degraded) are monitored. These sets of measurements are used as input to inversely calculate conductivity maps for the complete composite part and thus indirectly assess its structural health. Such processes are inherently ill-posed. Data post-processing approaches are proposed here to diminish this uncertainty and to conclude to an optimally converge solution of the inverse problem. To assist the process, a material-originating mathematical constraint is introduced. The method is applied on carbon fiber reinforced polymer plates for different damage modes. Experimental recordings show that the analysis of electrical fields allows detecting the presence of damage. Discontinuities as small as 0.1% of the inspected area can be sensed. The proposed data post-processing techniques were applied and conductivity maps were calculated. The results show that using these techniques locating damage is possible with less than 10% error. Material-based constraints greatly enhance the prediction of the data post-processing techniques. It is believed that by overcoming certain implementation issues, electrical resistance tomography could evolve in the direction of a non-destructive evaluation or a structural health monitoring technique for composite structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.