Abstract

This paper presents a methodology to nondestructively locate and estimate the size of damage in structures for which a few natural frequencies or a few mode shapes are available. First, a frequency-based damage detection (FBDD) method is outlined. A damage-localization algorithm to locate damage from changes in natural frequencies and a damage-sizing algorithm to estimate crack-size from natural frequency perturbation are formulated. Next, a mode-shape-based damage detection (MBDD) method is outlined. A damage index algorithm to localize and estimate the severity of damage from monitoring changes in modal strain energy is formulated. The FBDD method and the MBDD method are evaluated for several damage scenarios by locating and sizing damage in numerically simulated prestressed concrete beams for which two natural frequencies and mode shapes are generated from finite element models. The result of the analyses indicates that the FBDD method and the MBDD method correctly localize the damage and accurately estimate the sizes of the cracks simulated in the test beam.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call