Abstract

A new method for damage identification in large, massive civil structures is presented, which is based on the idea that dead load is redistributed when damage occurs in the structure. The method uses static strain measurements due to dead load only as input to the identification procedure. An analytical model of a fixed-fixed beam is developed in which the damage is represented by a section of reduced flexural rigidity. The damage state is determined by the location, length, and severity of the stiffness reduction. A forward analysis of the beam response is first presented to illustrate how the dead load is redistributed for different damage scenarios. The inverse problem is defined by a constrained optimization problem and is solved using a genetic algorithm. The proposed method correctly identified damage in the beam for a wide range of locations and damage severities. The identification procedure, in general, has a greater degree of success with increasing damage severity. Results show that damage is difficult to identify when it is close to the inflection point of the undamaged beam, where the dead load strain is zero. The effect of measurement noise on the ability to identify damage is investigated in the companion paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call