Abstract
Low velocity impact loading in aircraft composite panels is a matter of concern in modern aircraft and can be caused either by maintenance accidents with tools or by in-flight impacts with debris. The consequences of impact loading in composite panels are matrix cracking, inter laminar failure and, eventually, fiber breakage for higher impact energies. Even when no visible impact damage is observed on the surface at the point of impact, matrix cracking and inter laminar failure can occur, and the carrying load of the composite laminates is considerably reduced. The greatest reduction in loading is observed in compression due to laminae buckling in the delaminated areas. The objective of this study is to determine the limit loading capacity and the damage growth mechanisms of impacted composite laminates when subjected to compression after impact loading. For this purpose a series of impact and compression after impact tests were carried out on composite laminates made of carbon fiber reinforced epoxy resin matrix. Four stacking sequences representative of four different elastic behaviours were used. Results show that the compressive, after impact, failure stress is influenced by the stacking sequence but a relatively independent strain to failure is observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.