Abstract

The defect formation in neutron irradiated SiC was investigated by means of Rutherford backscattering spectrometry in channelling mode (RBS), optical absorption and Raman spectroscopy. The relative defect concentration determined by RBS increases linearly with the neutron fluence without any saturation in the investigated fluence region. The spectral dependence of the absorption coefficient α at photon energies below 3.2eV is independent of the neutron fluence and corresponds to that observed in low-fluence ion implanted SiC. An increase of the defect concentration exhibits only in an increase of the absolute value of α. For photon energies above 3.3eV again an exponential increase of the absorption coefficient is found but with a slope increasing with rising defect concentration. This absorption is assumed to be of the Urbach type. Around 1.56eV a broad absorption band is observed which is most probably caused by divacancies VSiVC. The defects produced by the neutron irradiation of SiC result in a decrease of the peak intensity and a shift of the position of TO and LO Raman peaks towards lower wave numbers. The latter can be explained by tensile stress due to defects and mass increase of lattice atoms due to neutron capturing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.