Abstract

Deep rock mass stores large amounts of energy. Energy accumulation, dissipation, and release during the deformation and failure of rock mass occur when the rock mass is excavated via the drilling and blasting method. According to the energy effects, failure pattern, and effect of the strain rate on the rock strength, a Johnson–Holmquist rock (JHR) model was established by combining the energy-based tensile–compressive damage model and the Johnson–Holmquist ceramic model based on the coupling method for tensile–compressive damage in a rheological-dynamical analogy model. To apply the same method to the damage evolution mechanism of deep rock mass, the JHR model was incorporated into the LS-DYNA software. Subsequently, the self-developed numerical model was employed to investigate the damage evolution in the production blasting excavation of stopping holes under different stress fields. According to the failure law, the challenges in rock-mass excavation were analysed. This study provides a basis for the analysis and research regarding the blasting design in deep rock-mass excavation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.