Abstract
Damage such as cable pre-stress loss and anchorage failure may occur in a glass curtain wall structure supported by single-layer plane cable net but the influence on overall structural responses has not yet been identified. A finite-element model considering the stiffness contribution from glass panels is established to study the effects of two forms of damage: pre-stress loss and anchorage failure. The accuracy and reliability of the numerical model are validated experimentally, and the effects of stiffness of the glass panel on stress distributions are discussed. Compared to experimental results, the finite-element model has sufficient accuracy to quantify the damage effects. The contribution from bending stiffness of glass panels to overall structural stiffness is identified as about 10·6% and that from the glass panel membrane effect is about 12·2%. The modelling approach is extended to describe a realistic 15 m × 15 m glass curtain wall structure. The corresponding parametric analysis demonstrates that the stiffness contribution from glass panels depends on certain design parameters (e.g. number of glass grids and overall span), but can be ignored for structures with more than ten grids. In the investigated structures with 6∼15 grids, almost no difference was found between the effects of damage on the glass curtain wall structure and on the pure supporting cable net structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Civil Engineers - Structures and Buildings
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.