Abstract

Purpose The occurrence of multiple hazards in extreme conditions is not unknown nowadays, but the sustainability of the reinforced concrete structures under such scenarios form competitive challenges in civil engineering profession. Among all, fire following earthquake (FFE) is categorized under multiple extreme load scenarios which causes sequential damages to the structures. This paper aims to experiment a full-scale RC frame sub-assemblage for the FFE scenario and assess each stage of damage through the nondestructive testing method. Design/methodology/approach Two levels of simulated earthquake damages, i.e. immediate occupancy (IO) level and life safety (LS) level of structural performance were induced to the test frame and then, followed by a realistic compartment fire of 1 h duration. Also, the evaluation of damage to the RC frame after the fire subsequent to the earthquake was carried out by obtaining the ultimate capacity of the frame. Ultrasonic pulse velocity and rebound hammer test were conducted to assess the structural endurance of the damaged frame. Cracks were also marked during mechanical damages to the test frame to study the nature of its propagation. Findings Careful visual inspection during and after the fire test to the test frame were done. To differentiate between concrete chemically affected by the fire or physically damaged is an important issue. In situ inspection and laboratory tests of concrete components have been performed. Concrete from the test frame was localized with thermo-gravimetric analysis. The UPV results exhibited a sharp decrease in the strength of the concrete material which was also confirmed via the DTA, TGA and TG results. It is important to evaluate the residual capacity of the entire structure under the FFE scenario and propose rehabilitation/retrofit schemes for the building structure. Research limitations/implications The heterogeneity in the distribution of the damage has been identified due to variation of fire exposure. The study only highlights the capabilities of the methods for finding the residual capacity of the RC frame sub-assemblage after an occurrence of an FFE. Originality/value It is of find kind of research work on full-scale reinforced concrete building. In this, an attempt has been made for the evaluation of concrete structures affected by an FFE through nondestructive and destructive methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.