Abstract

Acoustic emission (AE) monitoring can provide confidence in the reliability of a structure or component, thereby reducing unnecessary maintenance and inspection. Due to the brittle nature of carbon fiber reinforced polymer (CFRP) failure and critical applications, it is crucial to develop a real-time monitoring technique that is able to assess structural integrity of these components. Comparable assessment criteria for the evaluation of structural integrity are needed as a part of AE monitoring system. Based on Austin and Coughlin criteria, numbers of high amplitude AE hits/events, historic index, AE cumulative energy, and severity were utilized to evaluate structural damage through a numerical rating. AE signals associated with structural damage were collected through ramp-up loading and low-cycle fatigue tests. A combination of source location filtering, waveform feature analysis and pattern recognition was used to filter acquired AE signals. The effect of prescribed signal period on the Austin and Coughlin criteria was studied. Due to the fact that the number of hits does not weigh the intensity of each hit, the Austin and Coughlin criteria was modified by excluding the number-of-hit score.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.