Abstract
To investigate the damage effect of different fractions from Polygonum multiflorum on normal human liver and liver cancer cells, in order to seek for fractions that can obviously kill cancer cells but have less impact on normal liver cells, and make a preliminary study on different mechanism of the two kinds of cells. P. multiflorum water-eluted fraction (RW), 50% ethanol-eluted fraction (R50) and 95% ethanol-eluted fraction (R95) were successively obtained from 70% ethanol extracts of P. multiflorum, after being eluted by water, 50% ethanol and 95% ethanol and then absorbed by AB-8 macroporous resin. Normal human liver L02 cells and liver cancer HepG2 cells were incubated with cell supernatants from different fractions and cells. MTT method and inverted microscope were adopted to observe the impact of L02 on growth of HepG2 cells, screening fractions with damage effect and detect their doses and time effect. Giemsa stain showed changes in cell nucleus after administration and flow cytometry analysis was used to detect cycle and apoptosis of L02 cells. MTT method and inverted microscope showed that R50 had significant growth inhibition effects on L02 and HepG2 cells. According to giemsa stain and flow cytometry analysis, R50 showed different effect on inducing the two cells: there are much more apoptotic HepG2 cells than apoptotic L02 cells in each time phase (the proportion of the apoptosis cells in HepG2 group were 83.62%, 60.52% and 74.49%, and ID2 31.02%, 20.57% and 25.32% after treated with R50 for 24, 48, 72 h. Both cells showed less than 5% of apoptotic cells in the negative control group in each time phase). However, there is no significant impact on cycle of both cells. R50 from P. multiflorum extracts had different damage effects on human liver L02 cells and liver cancer HepG2 cells, which was caused by different degree of induction on apoptosis of the two cells in nature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.