Abstract

Rock mass in tunnel, underground chamber and other underground engineering is inevitably affected by multiple blasting impact, rock mass cracking and failure are often affected by these damaged rock mass, so it is meaningful to study the rock mass affected by dynamic damage. To explore the influence of cyclic impact on the internal structure of marble, NMR (Nuclear Magnetic Resonance) technique was adopted to test the marble. It was found that the impact would rise the porosity of marble, and the pore size distribution would also change greatly. Then uniaxial compression experiments were conducted on core samples. The results show that the impact will cause significant damage to the marble, and the mechanical properties of the marble will be obviously degraded. With the increase of impact times, the peak strength and tangential deformation modulus tend to decrease. The impact effect promotes the initiation and development of rock microcracks, pushes forward the development of the compaction stage, and increases the strain at the full compaction point. In addition, the damage constitutive model with the combination of different disturbances and loads was constructed in stages according to the principle of statistics, and the experimental results were used to verify the damage constitutive model. The crack closure and failure of the samples subjected to different impact times were well reflected in the model, and the practical significance of the parameters in the model was analyzed. The failure mode of the sample subjected to different impact times is discussed and verified by acoustic emission technology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call