Abstract

A detailed experimental study is conducted using multi-walled carbon nanotubes (MWCNTs) as a sensory network to understand damage initiation and growth within the process zone of epoxy particulate composites under opening mode fracture loading. Thermoset epoxy resin composites are toughened with three weight fractions of carboxyl-terminated butadiene acrylonitrile copolymer (CTBN) rubber (10phr, 20phr and 30phr). Single-edge notch tension (SENT) geometry and far-field tensile loading conditions are used for this study. A modified four-point probe methodology coupled with a high-resolution data acquisition system is employed to capture the electrical response within the process zone of fracture test specimens. For each composite, the damage initiation and growth associated with linear and non-linear deformation is analyzed and discussed with respect to the change in crack tip opening displacement (CTOD). Although the electrical response did not differ qualitatively with the addition of both 10phr and 20phr rubber to epoxy, addition of 30phr of rubber showed a significantly different response both qualitatively and quantitatively. This is the result of several mechanisms such as disentanglement and stretching of epoxy matrix molecules, micro-crack blunting, debonding of rubber particles, void growth and propagation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.