Abstract

In this article, a novel vibration-based damage detection approach is proposed based on selecting effective cepstral coefficients, consisting of three main stages: (1) signal processing and feature extraction, (2) damage detection by combining effective cepstral coefficients through feature selection methods, and (3) performance evaluation. First, two feature extraction techniques are used in damage identification systems, including linear prediction cepstral coefficients and mel frequency cepstral coefficients. Second, to improve the performance of damage detection, the combination of the effective cepstral coefficients is proposed as a damage index. By applying several feature selection methods, the most effective coefficients are found and then combined to create a subset that carries the most significant information about the structural damage. Finally, the support vector machine classifier is performed to evaluate the proposed approach in detecting the structural damage. The proposed technique is verified using a suite of numerical and full-scale studies. Results confirm that the proposed method achieves a significant performance with great accuracy and reduces false alarms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.