Abstract
PurposeThe purpose of this paper is to detect damages in steel structures with actual connections, i.e. semi-rigid connections. The method will detect the damages by tracking the changes in the stiffness of structural members using only a limited number of dynamic responses and without knowing the type or time history of the dynamic force applied on the structure.Design/methodology/approachThe paper proposes a technique that combines the iterative least-square and unscented Kalman filter (UKF) methods to identify the stiffness of beams and columns in typical two-dimensional steel-framed structures with semi-rigid connections. The detection of damages is by using nonlinear time-domain structural health monitoring method.FindingsThe technique is verified by using numerical examples using noise-free and noise-included dynamic responses from two different types of dynamic forces: harmonic and blast loads. The results showed that the UKF method with iterative least-square is a powerful approach to identify and detect damages in structures that have nonlinear behavior and the method was able to detect the damages in beams with a very high accuracy for noise-free and noise-included dynamic responses. In addition, the optimum number and locations of dynamic responses (accelerometer sensors) required for damage detection were determined.Originality/valueThis paper fulfills an identified need to detect damages in steel structures using only a limited number of accelerometer sensors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.