Abstract

Recently, a damage detection method for nonlinear systems using model updating has been developed by the authors. The method uses an augmented linear model of the system, which is determined from the functional form of the nonlinearities and a nonlinear discrete model of the system. The modal properties of the augmented system after the onset of damage are extracted from the system using a modal analysis technique that uses known but not prescribed forcing. Minimum Rank Perturbation Theory was generalized so that damage location and extent could be determined using the augmented modal properties. The method was demonstrated previously for cubic springs and Coulomb friction nonlinearities. In this work, the methodology is extended to handle large systems where only the first few of the augmented eigenvectors are known. The methodology capitalizes on the ability to create multiple augmentations for a single nonlinear system. Cubic spring nonlinearities are explored within a nonlinear 3-bay truss structure for various damage scenarios simulated numerically.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call