Abstract
Electrical resistance tomography (ERT) serves as a non-invasive, non-destructive, non-radioactive imaging technique. It has potential applications in industrial and biological imaging. This paper presents an optimized inverse algorithm, named Newton’s Constrained Reconstruction Method (NCRM), to detect damage in cementitious materials. Several constraints were utilized in the proposed algorithm to optimize initial parameters. The range and spatial distribution of conductivities within the sample were chosen as two main constraints. Two sets of numerical and a set of experimental voltage data were used to reconstruct conductivity distribution images based on this algorithm. To evaluate the quality of reconstructed images, two image quality evaluation indicators, correlation coefficient and position error were used. Results show that the proposed algorithm NCRM has the ability to enhance the reconstructed image quality with fewer artifacts and has better positioning accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.