Abstract

In recent times, esthetic and functionality requirements have caused many buildings to be asymmetric. An asymmetric building can be defined as one in which there is either geometric, stiffness, or mass eccentricity. Such buildings exhibit complex vibrations as there is coupling between the lateral and torsional components of vibration and are referred to as torsionally coupled buildings. These buildings require 3-dimensional modeling and analysis. Despite recent research and successful applications of damage detection techniques in civil structures, assessing damage in asymmetric buildings remains a challenging task for structural engineers. There has been considerably less investigation on the methodologies for detecting and locating damage specific to torsionally coupled asymmetric buildings. This paper develops a multicriteria approach using vibration-based damage indices for detecting and locating damage in asymmetric building structures. These vibration indices are based on the modified versions of the modal flexibility and the modal strain energy methods. The proposed procedure is first validated through experimental testing of a laboratory scale asymmetric building model. Numerically simulated modal data of a larger scale asymmetric building obtained from finite element analysis of the intact and damaged asymmetric building models are then applied into the modified modal flexibility and modal strain energy algorithms for detecting and locating the damage. Results show that the proposed method is capable of detecting both single and multiple damages in the beams and columns of asymmetric building structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.