Abstract

A damage in a structure alters its dynamic characteristics. The change is characterized by changes in the eigenparameters, i.e., natural frequency, damping values and the mode shapes associated with each natural frequency. Considerable effort has been spent in obtaining a relationship between the changes in eigenparameters, the damage location and the damage size. Most of the emphasis has been on using the changes in the natural frequencies and the damping values to determine the location and the size of the damage. In this paper a new parameter called curvature mode shape is investigated as a possible candidate for identifying and locating damage in a structure. By using a cantilever and a simply supported analytical beam model, it is shown here that the absolute changes in the curvature mode shapes are localized in the region of damage and hence can be used to detect damage in a structure. The changes in the curvature mode shapes increase with increasing size of damage. This information can be used to obtain the amount of damage in the structure. Finite element analysis was used to obtain the displacement mode shapes of the two models. By using a central difference approximation, curvature mode shapes were then calculated from the displacement mode shapes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call