Abstract

In the preceding paper we described the properties of nucleoids analyzed with the fluorescent halo assay at pH 6.9 and 9, as well as in the presence of reducing and chelating agents and after X-irradiation. We found analogies between the properties of type I and II nucleoids, as examined by Lebkowski and Laemmli (1982), and nucleoids analyzed with the fluorescent halo assay. We concluded that radiation-inflicted damage at two levels of DNA folding is measured at pH 6.9 and 9. In this paper we examined repair of damage to the nucleoid structure as assayed by the fluorescent halo method in X-irradiated L5178Y (LY) sublines; R (radiation resistant, D0 = 1.4 Gy) and S (radiation sensitive, D0 = 0.5 Gy). Halo diameters were measured after cell lysis in the presence of propidium iodide (PI; 0.5 to 50 micrograms/ml) at pH 6.9 and 9. The ability of DNA to be rewound at 10-50 micrograms/ml of PI was impaired by X-irradiation and partly restored during 90-min post-irradiation incubation, indicating damage to the superhelical structure and its partial restoration. The exponential time constants for repair were 10.1 min (LY-S, 6 Gy), 11.2 min (LY-R, 12 Gy), and 20.3 min (LY-s, 12 Gy) when measured at pH 9. In X-irradiated (12 Gy) LY-S cells, slower restoration of DNA supercoiling was observed at pH9 than at pH 6.9. The presence of labile lesions at pH 9 did not prevent restoration of the higher-order DNA structure, as estimated from DNA rewinding at pH 6.9 in LY-S cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call