Abstract

Rubber components have been widely used in automotive industry as anti-vibration components for many years. These subjected to fluctuating loads, often fail due to the nucleation and growth of defects or cracks. To prevent such failures, it is necessary to understand the fatigue failure mechanism for rubber materials and evaluate the fatigue life for rubber components. Fatigue lifetime prediction and evaluation are the key technologies to assure the safety and reliability of automotive rubber components. The objective of this study is to develop the durability analysis process for vulcanized rubber components, which is applicable to predict fatigue lifetime at initial product design step. Fatigue lifetime prediction methodology of vulcanized natural rubber was proposed by incorporating the finite element analysis and fatigue damage parameter of maximum Green-Lagrange strains appearing at the critical location determined from fatigue test. In order to develop an appropriate fatigue damage parameter of the rubber material, a series of displacement controlled fatigue tests was conducted using 3-dimensional dumbbell specimens with different levels of mean displacement. It was shown that the maximum Green-Lagrange strain was a proper damage parameter, taking the mean displacement effects into account. Nonlinear finite element analyses of the engine mount insulator and 3-dimensional dumbbell specimens were performed based on a hyper-elastic material model determined from the simple tension, equi-biaxial tension and planar test. Fatigue lifetime prediction of engine mount insulator was made by incorporating the maximum Green-Lagrange strain values, which was evaluated from the finite element analysis and fatigue tests, respectively. Predicted fatigue lives of the rubber component showed a fairly good agreement with the experimental fatigue lives. Fatigue analysis procedure employed in this study could be used approximately for the fatigue design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call