Abstract

The low-velocity impact resistance of fiber metal laminates (FMLs) is investigated. FMLs with titanium alloy Ti-6Al-4V sheets and glass fiber/epoxy layers are fabricated using the hand layup technique, exhibiting the same total metal layer thickness. A drop tower is used to produce a low-velocity impact on the FMLs. FML with outermost metallic layers exhibits comparatively higher lateral spreading and interlayer delamination opening contrary to FML with more metallic layers. This is also observed in high-velocity impact. The low-velocity impact resistance of titanium-based FMLs seems higher than aluminum-based FMLs. This is also noticed in high-velocity impact for former and latter FMLs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call