Abstract
The damage characteristic of particle reinforced metal matrix composite (PMMC) was studied by ultrasonic non-destructive evaluation method. After the sample was damaged induced by tensile load, the ultrasonic wave that propagated in the sample were collected. The damage parameter was defined by ultrasonic parameter and the wave signals were analyzed by correlation method. The results show that with the increase of tensile load, the damage parameter increases and the correlation coefficient decreases. The fracture section morphologies of PMMC under tensile load were observed by SEM. It is found that there are many concaves in the metal matrix. Therefore the damage evolution can be concluded. The initial damage is induced by void nucleation, growth and subsequent coalescence in the matrix or interface separation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transactions of Nonferrous Metals Society of China
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.