Abstract

AbstractDetermination of the gunfire probability of kill against a target requires two parameters to be taken into consideration: the likelihood of hitting the target (susceptibility) and the conditional probability of kill given a hit (vulnerability). Two commonly used methods for calculating the latter probability are (1) treating each hit upon the target independently, and (2) setting an exact number of hits to obtain a target kill. Each of these methods contains an implicit assumption about the probability distribution of the number of hits‐to‐kill. Method (1) assumes that the most likely kill scenario occurs with exactly one hit, whereas (2) implies that achieving a precise number of hits always results in a kill. These methods can produce significant differences in the predicted gun effectiveness, even if the mean number of hits‐to‐kill for each distribution is the same. We therefore introduce a new modeling approach with a more general distribution for the number of hits‐to‐kill. The approach is configurable to various classes of damage mechanism and is able to match both methods (1) and (2) with a suitable choice of parameter. We use this new approach to explore the influence of various damage accumulation models on the predicted effectiveness of weapon‐target engagements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.