Abstract

Relative damage-index based on the leadfree interconnect transient strain history from digital image correlation, explicit finite-elements, cohesive-zone elements, and component’s survivability envelope has been developed for life-prediction of two-leadfree electronic alloy systems. Life prediction of pristine and thermally-aged assemblies, have been investigated. Solder alloy system studied include Sn1Ag0.5Cu, and 96.5Sn3.5Ag. Transient strains during the shock-impact have been measured using digital image correlation in conjunction with high-speed cameras operating at 50,000 fps. Both the board strains and the package strains have been measured in a variety of drop orientations including JEDEC horizontal drop orientation, vertical drop orientation and intermediate drop orientations. In addition the effect of sequential stresses of thermal aging and shock-impact on the failure mechanisms has also been studied. The thermal aging condition used for the study includes 125°C for 100 hrs. The presented methodology addresses the need for life prediction of new lead-free alloy-systems under shock and vibration, which is largely beyond the state of art. Three failure modes have been predicted including interfacial failure at the copper-solder interface, solder-PCB interface, and the solder joint failure. Explicit non-linear finite element models with cohesive-zone elements have been developed and correlated with experimental results. Velocity data from digital image correlation has been used to drive the attachment degrees of freedom of the submodel and extract transient interconnect strain histories. Explicit finite-element sub-modeling has been correlated with the full-field strain in various locations, orientations, on both the package and the board-side. The survivability of the leadfree interconnections under sequential loading (thermal aging and shock-impact) from simulation has been compared with pristine circuit assemblies subjected to shock-impact. Sequential loading changes the failure modes and decreases the drop reliability as compared to the room temperature experimental results. Damage index based survivability envelope is intended for component integration to ensure reliability in harsh environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.