Abstract

A pseudo-elastic damage-accumulation model is developed by application of the strain energy density theory. The three-point bending specimen is analyzed to illustrate the crack growth characteristics according to a linear elastic softening constitutive law that is typical of concrete materials. Damage accumulation is accounted for by the decrease of elastic modulus and fracture toughness. Both of these effects are assessed by means of the strain energy density functions in the elements around a slowly moving crack. The rate of change of the strain energy density factor S with crack growth as expressed by the relation d S/d a = constant is shown to describe the failure behavior of concrete. Results are obtained for different loading steps that yield different slopes of lines in an S versus a (crack length) plot. The lines rotate about the common intersect in an anti-clockwise direction as the load steps are increased. The intersect shifts upward according to increase in the specimen size. In this way, the combined interaction of material properties, load steps and specimen geometry and size are easily analyzed in terms of the failure mode or behavior that can change from the very brittle to the ductile involving stable crack growth. An upper limit on specimen or structural size is established beyond which stable crack growth ceases to occur and failure corresponds to unstable crack propagation or catastrophic fracture. The parameters that control the failure mode are the threshold values of the strain energy density function (d W/d V) c and the strain energy density factor S c.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call