Abstract

We study whether spin-independent scattering of weakly-interacting massive particles (WIMPs) with nuclei can account for the annual modulation signal reported by DAMA. We consider both elastic and inelastic scattering processes. We find that there is a region of WIMP parameter space which can simultaneously accommodate DAMA and the null results of CDMS, CRESST, and XENON. This region corresponds to an ordinary, elastically-scattering WIMP with a standard Maxwell-Boltzmann distribution, a mass 3mDM8, and a spin-independent cross section with nucleons 3 × 10−412σpSI5 × 10−392. This new region of parameter space depends crucially on the effect of channeling on the energy threshold for WIMP detection in the DAMA experiment; without the inclusion of this effect, the DAMA allowed region is essentially closed by null experiments. Such low-mass WIMPs arise in many theories of Beyond the Standard Model physics, from minimal extensions of the MSSM to solutions of the baryon-dark matter coincidence problem. We find that inelastic scattering channels do not open up a significant parameter region consistent with all experimental results. Future experiments with low energy thresholds for detecting nuclear recoils, such as CDMSII-Si and those utilizing ultra-low energy germanium detectors, will be able to probe the DAMA region of parameter space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.