Abstract
Dams are critical infrastructure necessary for water security, agriculture, flood risk management, river navigation, and clean energy generation. However, these multiple, and often conflicting, objectives introduce complexity in managing dam operations. In addition, dam infrastructure has been evolving as complex systems-of-systems with multiple interacting components and subsystems, all susceptible to a wide range of uncertainties. Such complexities and uncertainties have triggered extensive research initiatives focused on dam systems and reservoir operational safety. Focusing on the latter, this paper meta-researches (conducts research-on-research) previously published studies to identify the critical research gaps and propose future research directions. In this respect, this paper first performs a quantitative analysis of the pertinent literature, using text mining and subsequent topic modeling, to identify and classify major and uncover latent topics in the field. Subsequently, qualitative analysis is conducted to critically review the identified topics, exploring the concepts, definitions, modeling tools, and major research trends. Specifically, the study identified seven topics: optimization models; climate change; flood risk; inflow forecasting; hydropower generation; water supply management; and risk-based assessment and management. The study also presents three main research gaps associated with the limitations in modeling concepts, modeling tools capabilities, and the lack of resilience-guided management of dam operational safety. Overall, this study presents a road map of the currently available dam and reservoir operational safety research and associated knowledge gaps, as well as potential future research directions to ensure the resilience of such critically important infrastructure, especially in the age of climate change.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.