Abstract

Dam-break waves are a major concern for communities and infrastructures in flood-prone areas. The impact of dam–break waves against rigid obstacles after propagation on a mobile bed is lacking both in experimental datasets and in numerical investigations aimed at assessing the capabilities and limitations of available morphodynamic models. To fill these gaps, a novel data set from experiments of dam-break waves propagating over an erodible bottom and impacting over a vertical wall is presented and compared with numerical simulations performed by the Saint Venant-Exner model. First, the effects of bottom mobility are discussed by comparison with the corresponding fixed bed condition. Then, supplementary conditions are investigated for different initial water levels and reservoir lengths. The comparison with the results of the numerical simulation shows that the relatively simple model employed is able to reproduce the general features of the process and the peak impact force with reasonable accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.