Abstract

Dams are vital for production of electricity, storage of water and irrigation purposes but pose a serious risk to the community, if breached. The downstream flood wave propagation, resulting from failure of a dam can subject the population and infrastructure to considerable damage. No matter how low the chances of failure, the cost of failure makes it a higher risk. Mitigation of such risks requires better understanding of the hazard that a dam may pose in case of failure. This study focuses on the effects of flood wave propagation on a fixed bed on the downstream side resulting from sudden dam break. Two conditions are simulated: 1. when the downstream side is open, 2. when the downstream side is closed. It is observed that the flood wave diminishes in velocity and height with increase in time for both cases. For downstream open condition, the flood wave attains maximum height in 2 to 4 sec and maximum velocity within 2 to 5 sec. For downstream closed condition, the flood wave attains maximum height within 5to 10 sec and maximum velocity within 3 to 5 sec. The results obtained from the two-dimensional shallow water equation based numerical model are in close agreementwith the experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.