Abstract

The optimal timing of the transition from vegetative growth to reproductive growth is critical for plant reproductive success, and the underlying regulatory mechanisms have been well studied in angiosperm model species, but relatively little in gymnosperms. DAL1, a MADS domain transcription factor (TF) gene that shows a conserved age-related expression profile in conifers, may be an age timer. However, how the DAL1 mediates the onset of reproductive growth remains poorly understood. Here, we have shown that the PtDAL1 directly regulates the PtDAL10 transcription by binding to its promoter region in vitro. PtDAL1, forms ternary complexes in vitro and in N. benthamiana with PtDAL10 and PtMADS11, two potential candidate regulators of the vegetative to reproductive transition in Chinese pine (Pinus tabuliformis). The PtDAL10 was progressively induced in new shoots with age and highly accumulated in male and female cones. Overexpression of PtDAL10 rescued the flowering of ft-10 and soc1-1-2 mutants in Arabidopsis. We provide insight into the molecular components associated with the PtDAL1, which integrates the vegetative to reproductive phase transition into age-mediated progressive development of the whole plant in conifers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.