Abstract

We reexamined a Daisyworld model from the traditional view of competition theory. Unlike the original model, white and black daisies in our model incorporate a seeding/germination trade-off against bare ground area without assuming the local temperature reward. As a result, the planetary temperature is automatically regulated by two species if the following conditions are met: (i) the species react equally to an environmental condition, but one can alter the environmental condition in the opposite direction to the other. (ii) that one of the two cannot have both a higher maximal growth rate ( μ max ) and lower half-saturation constant ( K) than those of the other. In other words, a pair of phenotypes incorporates a trade-off between quality and number of seeds. We found that the homeostatic regulation can also be reconciled with the adaptive evolution of optimal temperature. The results of simulation imply that biotic environmental feedback can also be maintained when the emergence of polymorphisms (black and white daisies) is closely linked to such a trade-off.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call