Abstract

Dairy Propionibacterium freudenreichii is a candidate non-lactic acid probiotic. However, little information is available on the effect of P. freudenreichii on lifespan extension in humans. The aim of this study was to evaluate the effects of P. freudenreichii on lifespan extension and to elucidate the mechanism of P. freudenreichii-dependent lifespan extension in Caenorhabditis elegans. The results showed that P. freudenreichii significantly (p < 0.05) extended the lifespan of C. elegans compared with Escherichia coli OP50, a standard food for the worm. Analysis of age-related biomarkers showed that P. freudenreichii retards ageing. Moreover, P. freudenreichii increased resistance against a human pathogen, Salmonella typhimurium, through the activation of skn-1, which is involved in pathogen resistance in C. elegans. Furthermore, P. freudenreichii-fed daf-16, jnk-1, skn-1 or daf-7 loss-of-function mutants showed an extended mean lifespan compared with E. coli OP50-fed worms. However, the increase in lifespan was not observed in pmk-1, sek-1, mek-1, dbl-1, daf-12 or daf-2 mutants, which suggests potential roles for these genes in P. freudenreichii-induced longevity in C. elegans. In conclusion, P. freudenreichii extends the lifespan of C. elegans via the p38 MAPK pathway involved in stress response and the TGF-β pathways associated with anti-inflammation processes in the immune system.

Highlights

  • IntroductionThe DAF-2/DAF-16 pathway is involved in antibacterial defence and regulates lifespan in C. elegans

  • C. elegans fed a lawn of P. freudenreichii, compared with the worms fed the standard E. coli OP50 lawn, showed a significantly (p < 0.001) increased mean lifespan (MLS) (Table 1)

  • Three-day-old worms with similar sizes were transferred to nematode growth medium plates seeded with E. coli OP50 or P. freudenreichii, and body size was measured for 4 days

Read more

Summary

Introduction

The DAF-2/DAF-16 pathway is involved in antibacterial defence and regulates lifespan in C. elegans. A longevity-promoting factor, SKN-1, increases stress tolerance and extends lifespan in an IIS-dependent manner. According to a previous report, probiotics (such as lactic acid bacteria), compared with a standard food (such as E. coli OP50), may enhance immunity and longevity in C. elegans[18,19]. Lactic acid bacteria, such as Weissella koreensis and W. cibaria, extend the lifespan of C. elegans and improve biomarkers of ageing, such as a reduction in lipofuscin accumulation, decreases in body size and enhancement of body movement[20]. The effect of P. freudenreichii on the lifespan extension of C. elegans and enhancement of immune responses were investigated, and the mechanism underlying P. freudenreichii-mediated lifespan extension in C. elegans was elucidated using loss-of-function mutants

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.