Abstract

AbstractVolatility plays a key role in asset and portfolio management and derivatives pricing. As such, accurate measures and good forecasts of volatility are crucial for the implementation and evaluation of asset and derivative pricing models in addition to trading and hedging strategies. However, whilst GARCH models are able to capture the observed clustering effect in asset price volatility in‐sample, they appear to provide relatively poor out‐of‐sample forecasts. Recent research has suggested that this relative failure of GARCH models arises not from a failure of the model but a failure to specify correctly the ‘true volatility’ measure against which forecasting performance is measured. It is argued that the standard approach of using ex post daily squared returns as the measure of ‘true volatility’ includes a large noisy component. An alternative measure for ‘true volatility’ has therefore been suggested, based upon the cumulative squared returns from intra‐day data. This paper implements that technique and reports that, in a dataset of 17 daily exchange rate series, the GARCH model outperforms smoothing and moving average techniques which have been previously identified as providing superior volatility forecasts. Copyright © 2004 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.