Abstract

Peptide immunotherapy is being explored to modulate varied disease states; however, the mechanism of action remains poorly understood. In this study, we investigated the ability of a subcutaneous peptide immunization schedule to induce of CD4(+) CD25(+) T regulatory cells. DO11.10 T cell receptor (TCR) transgenic mice on a Rag 2(-/-) background were injected subcutaneously with varied doses of purified ovalbumin (OVA(323-339)) peptide daily for 16 days. While these mice have no CD4(+) CD25(+) T regulatory cells, following this injection schedule up to 30% of the CD4(+) cells were found to express CD25. Real-time quantitative polymerase chain reaction (QPCR) analysis of the induced CD4(+) CD25(+) T cells revealed increased expression of forkhead box P3 (FoxP3), suggesting that these cells may have a regulatory function. Proliferation and suppression assays in vitro utilizing the induced CD4(+) CD25(+) T cells revealed a profound anergic phenotype in addition to potent suppressive capability. Importantly, co-injection of the induced CD4(+) CD25(+) T cells with 5,6-carboxy-succinimidyl-fluorescence-ester (CFSE)-labelled naive CD4(+) T cells (responder cells) into BALB/c recipient mice reduced proliferation and differentiation of the responder cells in response to challenge with OVA(323-339) peptide plus adjuvant. We conclude that repeated subcutaneous exposure to low-dose peptide leads to de novo induction of CD4(+) CD25(+) FoxP3(+) T regulatory cells with potent in vitro and in vivo suppressive capability, thereby suggesting that one mechanism of peptide immunotherapy appears to be induction of CD4(+) CD25(+) Foxp3(+) T regulatory cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call