Abstract
The municipality of La Virginia (Risaralda, Colombia) is constantly affected by fl oods that originate from increased water levels in the Cauca River. Disaster relief agencies do not currently have adequate monitoring systems to identify potential overfl ow events in time-series observations to prevent fl ood damage to homes or injury to the general population. In this paper, various simulation models are proposed for the prediction of fl ooding that contributes as a technical tool to the development and implementation of early warning systems to improve the responsiveness of disaster relief agencies. The models, which are based on artifi cial neural networks, take hydroclimatological information from different stations along the Cauca River Basin, and the trend indicates the average daily level of the river within the next 48 hours. This methodology can be easily applied to other urban areas exposed to fl ood risks in developing countries.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Revista Facultad de Ingeniería Universidad de Antioquia
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.