Abstract

Various parasite-host interactions that involve adaptive manipulation of host behavior display time-of-day synchronization of certain events. One example is the manipulated biting behavior observed in Carpenter ants infected with Ophiocordyceps unilateralis sensu lato. We hypothesized that biological clocks play an important role in this and other parasite-host interactions. In order to identify candidate molecular clock components, we used two general strategies: bioinformatics and transcriptional profiling. The bioinformatics approach was used to identify putative homologs of known clock genes. For transcriptional profiling, RNA-Seq was performed on 48 h time courses of Ophiocordyceps kimflemingiae (a recently named species of the O. unilateralis complex), whose genome has recently been sequenced. Fungal blastospores were entrained in liquid media under 24 h light-dark (LD) cycles and were harvested at 4 h intervals either under LD or continuous darkness. Of all O. kimflemingiae genes, 5.3% had rhythmic mRNAs under these conditions (JTK Cycle, ≤ 0.057 statistical cutoff). Our data further indicates that a significant number of transcription factors have a peaked activity during the light phase (day time). The expression levels of a significant number of secreted enzymes, proteases, toxins and small bioactive compounds peaked during the dark phase or subjective night. These findings support a model whereby this fungal parasite uses its biological clock for phase-specific activity. We further suggest that this may be a general mechanism involved in parasite-host interactions.

Highlights

  • Endogenous temporal programs, which anticipate daily changes in e.g. temperature and light, have evolved in organisms from all phyla [1,2,3,4]

  • We identified conditions for O. kimflemingiae that would induce morphological growth resembling that in situ

  • We have provided the first evidence that the behavior manipulating fungus O. kimflemingiae has a circadian clock

Read more

Summary

Introduction

Endogenous temporal programs, which anticipate daily changes in e.g. temperature and light, have evolved in organisms from all phyla [1,2,3,4]. These programs function as circadian clocks, organizing physiology and behavior to specific times of day (phases). Circadian clocks share several properties, most notably a free-running rhythm of about 24 h in constant conditions and entrainment or synchronization of these rhythms to exactly 24 h in the presence of highly. Rhythms in a behavior-manipulating fungal parasite de/Friedrich-Baur-Institut/de/institut/friedrich_ baur_stiftung). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.