Abstract

BackgroundCBFV (cerebral blood flow velocity) is lower in the morning than in the afternoon and evening. Two hypotheses have been proposed to explain the time of day changes in CBFV: 1) CBFV changes are due to sleep-associated processes or 2) time of day changes in CBFV are due to an endogenous circadian rhythm independent of sleep. The aim of this study was to examine CBFV over 30 hours of sustained wakefulness to determine whether CBFV exhibits fluctuations associated with time of day.MethodsEleven subjects underwent a modified constant routine protocol. CBFV from the middle cerebral artery was monitored by chronic recording of Transcranial Doppler (TCD) ultrasonography. Other variables included core body temperature (CBT), end-tidal carbon dioxide (EtCO2), blood pressure, and heart rate. Salivary dim light melatonin onset (DLMO) served as a measure of endogenous circadian phase position.ResultsA non-linear multiple regression, cosine fit analysis revealed that both the CBT and CBFV rhythm fit a 24 hour rhythm (R2 = 0.62 and R2 = 0.68, respectively). Circadian phase position of CBT occurred at 6:05 am while CBFV occurred at 12:02 pm, revealing a six hour, or 90 degree difference between these two rhythms (t = 4.9, df = 10, p < 0.01). Once aligned, the rhythm of CBFV closely tracked the rhythm of CBT as demonstrated by the substantial correlation between these two measures (r = 0.77, p < 0.01).ConclusionIn conclusion, time of day variations in CBFV have an approximately 24 hour rhythm under constant conditions, suggesting regulation by a circadian oscillator. The 90 degree-phase angle difference between the CBT and CBFV rhythms may help explain previous findings of lower CBFV values in the morning. The phase difference occurs at a time period during which cognitive performance decrements have been observed and when both cardiovascular and cerebrovascular events occur more frequently. The mechanisms underlying this phase angle difference require further exploration.

Highlights

  • cerebral blood flow velocity (CBFV) is lower in the morning than in the afternoon and evening

  • The decline of CBFV across the sleep period and rise after subjects are awakened in the morning resemble the endogenous circadian changes in core body temperature (CBT), a reliable index of endogenous circadian rhythmicity

  • This study is the first to use the constant routine (CR) protocol to determine whether the endogenous circadian

Read more

Summary

Introduction

CBFV (cerebral blood flow velocity) is lower in the morning than in the afternoon and evening. The reduced physical activity [13], reduced body temperature, and the recumbent sleeping position have been proposed as contributors [14] to the decline in CBFV and analogous brain processes An alternative to these explanations that attribute changes in CBFV to sleep and wake dependent processes is that this pattern of fluctuation reflects an endogenous process with circadian rhythmicity. The decline of CBFV across the sleep period and rise after subjects are awakened in the morning resemble the endogenous circadian changes in core body temperature (CBT), a reliable index of endogenous circadian rhythmicity. Both patterns are low during sleep, start to rise in the morning, reach their peak in the late afternoon, and drop during the sleep period

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call