Abstract
In this study, three different neural network algorithms (feed forward back propagation, FFBP; radial basis function; generalized regression neural network) and wavelet transformation were used for daily precipitation predictions. Different input combinations were tested for the precipitation estimation. As a result, the most appropriate neural network model was determined for each station. Also linear regression model performance is compared with the wavelet neural networks models. It was seen that the wavelet FFBP method provided the best performance evaluation criteria. The results indicate that coupling wavelet transforms with neural network can provide significant advantages for estimation process. In addition, global wavelet spectrum provides considerable information about the structure of the physical process to be modeled.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Stochastic Environmental Research and Risk Assessment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.