Abstract

AbstractThe purpose of the short-term electricity demand prediction is to forecast in advance the system load, represented by the sum of all consumers load at the same time. Power demand forecasting is important for economically efficient operation and effective control of power systems and enables to plan the load of generating unit. A precise load forecasting is required to avoid high generation cost and the spinning reserve capacity. Under-prediction of the demands leads to an insufficient reserve capacity preparation and can threaten the system stability, on the other hand, over-prediction leads to an unnecessarily large reserve that leads to a high cost preparations. Differential polynomial neural network is a new neural network type, which forms and resolves an unknown general partial differential equation of an approximation of a searched function, described by data observations. It generates convergent sum series of relative polynomial derivative terms, which can substitute for the ordinary differential equation, describing 1-parametric function time-series with partial derivatives. A new method of the short-term power demand forecasting, based on similarity relations of subsequent day progress cycles at the same time points is presented and tested on 2 datasets. Comparisons were done with the artificial neural network using the same prediction method. Experimental results indicate that proposed method using the differential polynomial network is efficient.Keywordspower demand predictionweek load cycledifferential polynomial neural networksum relative derivative term

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.