Abstract
Cortright, R. N., M. P. Chandler, P. W. R. Lemon and S. E. Dicarlo. Daily exercise reduces fat, protein and body mass in male but not female rats. Physiol Behav 62(1): 105–111, 1997.—This study was designed to compare the estimated energy balance, linear growth (body and bone lengths) and body composition (all components including body mass, total body water, fat, protein and ash) response to daily spontaneous running (DSR) in young male and female rats. We tested the hypothesis that due to gender differences in energy efficiency, DSR would reduce linear growth and body composition more in male rats. Fourteen male and sixteen female weanling Sprague-Dawley rats were randomly assigned to either a sedentary (SED) control (male 7, female 8) or DSR (male 7, female 8) group. The DSR rats were allowed to run spontaneously in running wheels while SED rats remained in standard rat cages for 9 weeks. Body mass, running distance and food intake were measured over the nine week period. Subsequently, chemical analysis was performed to measure carcass content of water, protein, fat and ash. Linear growth was assessed by measures of body and bone lengths. The estimated energy balance of the DSR rats was computed and compared between genders. Estimated energy balance was significantly more negative in females than males due to significantly greater DSR distance. Body and bone lengths were similar among the SED and DSR female and SED and DSR male rats. However, whole body mass, fat mass and protein mass were significantly lower only in DSR males. These results demonstrate that DSR reduced body mass, body fat and protein mass in male rats but not in female rats despite a more negative estimated energy balance in female rats. These findings suggest that females are better protected from an energy deficit due to DSR. Possible mechanisms include gender-specific hormonal responses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.