Abstract

Daily dynamics of leaf (K(L)) and soil-to-branch hydraulic conductance (KS-B) was investigated in silver birch (Betula pendula Roth.) using evaporative flux method in situ: water potential drop was measured with a pressure chamber and evaporative flux was estimated as sap flux density measured with sap flow gauges. Canopy position had a significant (P < 0.001) effect on both K(L) and K(S-B). Upper-canopy leaves exhibited 1.7 and soil-to-branch pathway 2.3 times higher hydraulic efficiency than those for lower-canopy. K(L) varied significantly with time of day: K(L) for both upper- and lower-canopy leaves was lowest in the morning and rose gradually achieving maximal values in late afternoon (4.75 and 3.38 mmol m⁻² s⁻¹ MPa⁻¹, respectively). Relevant environmental factors affecting K(L) were photosynthetic photon flux density (Q(P)), air relative humidity (RH) and air temperature (T(A)). K(S-B) started rising in the morning and reached maximum in the lower canopy (1.44 mmol m⁻² s⁻¹ MPa⁻¹) at 1300 h and in the upper canopy (2.52 mmol m⁻² s⁻¹ MPa⁻¹) at 1500 h, decreasing afterwards. Environmental factors controlling K(S-B) were Ψ(S) and Q(P). The diurnal patterns of K(L) reflect a combination of environmental factors and endogenous rhythms. The temporal pattern of K(S-B) refers to daily up- and down-regulation of hydraulic conductance of water transport pathway from soil-root interface to leaves with respect to changing irradiance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.