Abstract

The relationships between carbon gain and availability of sunfleck- and diffuse-light were determined for Adenocaulon bicolor by following the daily courses of assimilation and incident PFD on different days and locations in a redwood forest understory. Total PFD for the days sampled ranged from 1 to 4% of full sun values. Sunflecks accounted for 50 to 90% of the total PFD and were responsible for the majority of variation among days and locations. Each day had several clusters of sunfleck activity separated by relatively long intervals of diffuse light. Most sunflecks had maximum PFDs below the photosynthetic light-saturation point, and they had a median length and diffuse light interval separating them of 2 s. Daily carbon gain varied from 14 to 40 mmol m-2d-1 and was more strongly correlated with differences among days in total sunfleck PFD (r 2=0.81) than with variation in diffuse PFD (r 2=0.54). The assimilation that was attributable to sunflecks ranged from essentially zero on one day to 30 to 65% of the total on the other days. Carbon gain on most days was 70 to 80% of that predicted by a model based on the measured light dependences of assimilation. This model assumed an instantaneous response to changes in PFD, whereas incomplete photosynthetic induction probably limited the capacity to respond to sunflecks and therefore limited carbon gain on most days.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.