Abstract
SUMMARYIndividual 1‐ to 4‐year‐old almond trees [Prunus dulcis (Miller) D. A. Webb] were grown in lysimeters of different volumes, filled with loess. Once per year, at the beginning of each growing season, the lysimeters were watered to field capacity, and consequently each tree experienced a seasonal drought in relation to the amount of available water depending on soil volume and tree age. Measurements of leaf conductance were performed on youngest fully expanded, sun‐exposed leaves in climatized cuvettes. Leaf water potential was measured with a pressure chamber, which was also used for collecting xylem sap. Abscisic acid concentration of the xylem sap was determined with ELISA.There was no consistent diurnal relationship between abscisic acid concentration in xylem sap and leaf conductance. During a drying cycle, however, there was an inverse relationship between maximum leaf conductance and daily average abscisic acid concentration in xylem sap. With soil drying, the concentration of abscisic acid in xylem sap initially increased to a maximum in summer but decreased again towards autumn. Thus, during the first part of the drying cycle the predawn water potential of the leaf was significantly correlated with abscisic acid concentration in xylem sap. As predawn water potential becomes more negative during the first part of the drying cycle, the decline in maximum leaf conductance correlates with an increase in concentration of abscisic acid in xylem sap. With further decrease in predawn water potential towards the end of the drying cycle, the stomata remained closed even though there was a decreasing concentration of abscisic acid in the xylem sap.We conclude that the concentration of abscisic acid in xylem sap is not related to leaf conductance during the course of a day from end of May to September. However, during the course of a drying cycle the range of maximum leaf conductance seems to be dependent on the concentration of abscisic acid in xylem sap.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.