Abstract

Cryptochromes (CRY) are proteins with a dual role in the circadian function of different animals, participating in phototransduction and light signaling to the clock and as a transcriptional repressor that provides negative feedback in the clock feedback loop. Here we characterize functional expression of CRY as a marker of the functionality of the circadian pacemaker of crayfish (Procambarus clarkii) throughout post-embryonic development. Using different experimental light protocols and by means of immunofluorescence and biochemical methods, we report that, as in the adult, in young crayfish from the first embryonic stage CRY is present in cells adjacent to the eyestalk hemiellipsoidal body and the anterior margin of the brain protocerebrum. In the brain, CRY cycles after 72 h darkness, entraining to LD cycles. Meanwhile, as in the adult eye, in juveniles CRY is driven by light, showing an arrhythmic pattern in DD and cycling under LD. These results, as well as the completely different period length found in the brain circadian oscillations of 2nd post-embryonic stage and juvenile animals, suggest important changes in the properties of the crayfish pacemaker through the development. Therefore these data support a previous idea about the functionality of the circadian system from hatching.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.