Abstract

The aim of the study was to differentiate the impact of lighting conditions and feeding times on the regulation of lipid metabolism of goats under different photoperiods throughout the year. Seven Finnish landrace goats were kept under artificial lighting that simulated the annual changes of photoperiod at 60°N (the longest light period 18 h, the shortest 6 h). Ambient temperature and feeding regime were kept constant. Blood samples were collected six times a year at 2-h intervals for 2 days, first in light/dark (LD) conditions and then after 3 days in constant darkness (DD). Significant daily variations were detected in the concentrations of plasma free fatty acids (FFA) and glycerol throughout the year. The nocturnal decrease and morning rise of FFA levels were related to the photoperiod, while the trough levels of glycerol were associated with the concentrate meal times. In DD conditions, FFA and glycerol rhythms were unstable. A significant seasonal variation was detected in the overall FFA and glycerol levels suggesting decreased lipogenesis in winter, increased lipolysis in spring and high lipogenesis in summer and fall. There was no significant daily rhythm in serum leptin levels, nor did the profiles in LD and DD conditions differ. The leptin level was slightly lower in early fall than in the other seasons, paralleling a small decrease of body mass in the goats after the grazing season. The daily or annual variations of FFA and glycerol levels were not clearly related to leptin concentrations. The results suggest that lipid metabolism of goats is regulated by light even in constant temperature and feeding conditions; however, no significant contribution of leptin levels could be shown.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.