Abstract

To assess the potential of long-lived freshwater bivalve shells as a proxy for river environments, we examined daily and annual growth increments and analysed trace elements in the shells of Margaritifera laevis collected alive from the Shiribetsu River, located in the central western region of Hokkaido, Japan. The sum of the daily growth lines within a single annual increment corresponded to the days when the average daily water temperature was greater than 9 °C, suggesting that shell deposition occurred from spring to autumn. The growing degree days (GDD) are correlated with the maximum snow depth in winter and the average river discharge in spring. We conducted trace element microanalysis across daily and annual growth increments by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and compared the results with in situ environmental data. Sharp peaks in the barium/calcium ratio (Ba/Ca) observed during spring river discharge also suggest that the growth of Margaritifera shells is influenced by winter snow volume and meltwater. A 67-year profile of the standard growth index (SGI) estimated from twelve individual annual growth histories correlates to the annual snowfall accumulation. Distinct decadal variability is observed in the SGI and synchronized with the North Pacific Index and Pacific Decadal Oscillation. Sclerochronological approaches using Margaritifera shells could be valuable for reconstructing river and atmospheric conditions during the winter season, which is influenced by the Asian winter monsoon in the central Hokkaido region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.